Diploma Maths 3 Imp Notes - Helpwalaa - Free IT Updates & Opportunities

New Updates

Diploma Maths 3 Imp Notes


See the source image



M3 Notes
·       

For Metal wire
100cm
X & Y = I & b
2x+2y=100
Y=50-x
Area =x.y
A=x(50-x)
 
80 By 2 parts 
1.    Check condition
2.   Find eqn    |   x+y=80 ; (product=x(80-x)
3.   Diff. w.r.t x
4.   =0
5.   Find x & y
6.   Last answer
·       

For Metal Sheet
L=16-2x
B=10-2x
H=x
V= l *b * h
Diff. w .r .t.x (v)


 
Maxima & Minima      ( Least/Less*120/x}
1.    Y=Eqn
2.   Diff. w.r.t x
3.   =0
4.   Find X
5.   Again Diff. w.r.t x
6.   Max=negative & Min=Positive ……..Put X and find it
7.   Find Ymax & Ymin By Substituting x in Original Eqn
·        Tangent Normal
1.    Y=Eqn
2.   Find (x,y) co-ordinates from quadratic Eqn
3.   Diff. w.r.t x
4.   Dy/dx = m
5.   M’=   -1
       
6.   T y-y1 = m(x-x1)
7.   N y-y1 = m’(x-x1)
·        Radius of Curvature
1.    Diff. w.r.t x
2.   Find
3.   Again Diff. w.r.t x
4.   Find
5.  R=     [2] 3/2
                  
·       Integration – Third term ( Denominator = quadratic eqn)
1.   Check eqn
2.  Find Third term (TT)        ( ) 2
3.  Add & Subtract it
4.  Make it in like (x 2  +/-  a2 ) Form
5.  Use (x & a ) Formula
6.  Write I = Solved eqn
·       Text Box: * sin-1 x dxIntegration By Parts  -  ( L I A T E )
1.   Use LIATE and find  u & v
2.  Use
3.   =  u
4.  Then  solve that eqn
·       Integration : Denominator = sin2/ cos2
1.   Divide   by cos2x
2.  Put tan x = t
3.  Diff. tan x  w.r.t. “t”
4.  Then solve
·       Integration : By Substitution
1.   Find the term
2.  Put tan x/sin x  = t
3.  Diff. tan x/sin x  w.r.t. “t”
4.  Find dt = ?
5.  Put t & dt = I
6.  Solve
·       Integrals of form
1.   Put sin 2x =  OR  sin x =
2.  Put  & t = tan x
3.  Put & solve
·    Partial Fraction  
1.   Find Eqn : Put as A,B,C……
2.  Cancel Denominator
3.  Find  from eqn
4.  Find A , B , C  values = ?
5.  Put A,B,C in eqn and  solve
·       Evaluate Integration
1.   Solve derivative using formulas (carefully)
2.  Solve integration
3.  Put the limits
4.  Solve
·   Problems based on
1.   Write eqn as no. 1
2.  Use the property
3.  Replace
4.  Solve  and named as no. 2
5.  Add results (1) & (2)
6.  Solve & put limits
·       Find area under the curves
1.   Draw diagram
2.  Required area =
3.  Solve & last ans = sq. units
·       Find area between two curves
1.   Euate both x & y
2.  Find when x = ……………
3.  Diagram
4.  Write y1 & y2
5.  Required area =  
·    Text Box: *Eqn = (y3.sec2x)dx  +(3y2-tan –sec2y)=0Exact D.E {  }      
1.    Put m = dx & n = dy
2.   Diff w.r.t x & y partially
3.   If equal then the given eqn is Exact D.E
4.   Last ans
·        Verify eqn
1.    Write eqn
2.   Diff. w.r.t. x
3.   Again Diff. w.r.t.x
4.   Find the eqn
·        Probability
1.    P () = A
2.  Addition theorem = P(AB) = P(A) + P(B) – P(AB)
3.   P(A) + P(A)’ = 1
4.   P(A)’ = 1 - P(A)
5.   P(A) = 1 - P(A)’
6.  (AB)’ = AB’
7.  = Multiplication  |   = Addition
·        Mean = m = n.p
·    S.d =
·        Variance = npq
·     Coefficient of variation =
·        Poisson’s distribution
P(x = r) e-m  * mr
                     r!
·    Z=
·    Mean =
·        Phase card = queen / king / joker
·        Sample space = nC r
·        Problem Statements :
1.   Solved = 1- (AB’C’ )
2.   Not solved = P(A)* P(B)*P(C)
·    E() =
       =
·        Variance = v(x)
·    V(x) = 2) - 2
·    2) = 2)2 2)2
·        P.D.
P(x=t) nCrPrqn-r
·       q= 1-p
ü n= no. of trails
ü r =selected trails
ü p = probability
ü q = failure

Most Popular